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ABSTRACT 

We give an  example  to show t ha t  compac t  ex tens ions  of Kronecker  factors 

for two ergodic c o m m u t i n g  measu re  preserving t r ans fo rma t ions  can  be  

different. Also, a cri teria for ergodici ty of skew produc t s  of  i rrat ional  

ro ta t ions  wi th  finite abel ian groups is obtained.  

1. I n t r o d u c t i o n  

Compact extension for a dynamical system (X, B,/~, S) with respect to a factor 

has been much studied. In this note, we will focus on a property for compact 

extension with respect to the Kronecker factor, which will be called the degree 2 

Kronecker factor and denoted by ~2(S) (see w for nmre details). 

Let S and T be ergodic commuting measure preserving transformations on a 

probability space (X, B, p). It is well known that KI(S), the Kronecker factor 

of S, is the same as/(:I(T), the Kronecker factor of T. But, generally speaking, 

K:2(S) ~ K:2(T). In w we will give an example. Our proof of this example de- 

pends on the ergodicity of a certain type of skew products of irrational rotations 

with finite abelian groups, and problems in this area have been studied by Oren 

[6], Schmidt [8] and Veech [9]. In w we will also give a criterion for ergodic- 

ity. Most of the material in w can be found in [1, 2, 11] and, for the readers' 

convenience, we give a brief summary. 
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2. Compact  extens ions  and cocycles 

We start from some facts about factors and compact extensions. Readers can 

find more details in [1, 2, 11]. 

Let (X, B, #) be a probability space with a measure preserving transformation 

S and let :H = L2(X,  B, #). A factor of (X, B, #, S) is a S-invariant sub-a-algebra 

g C B. Let 

7~1(S) = {f  �9 7-/: for any ~ > O, 3 c l , . . . ,  cm �9 L ~ ( X ,  13, #) 

s.t. minl<_i<m [ S n f  - ci[ < r for all n}. 

Then there is a S-invariant sub-a-algebra ~1(S) c B such that 

";-ll(S) = L2(X ,  ;el(S) ,  #). 

/Cl(S) is called the degree  1 Kronecker factor (or just K r o n e c k e r  factor)  of 

the dynamical system (X, B, #, S). Actually, there exists a compact abelian group 

with a rotation equivalent (in some literature, called conjugate, see [10, page 59]) 

to this Kronecker factor. It is well known that if S and T are ergodic commuting 

(i.e. S T  = T S )  measure preserving transformations on X, then/~1(S) = /e l (T) .  

Let C be a factor of (X, B, #, S). Define 

7-lc(S) = {f  E 7-/: for any e > O, 3 c l , . . . ,  Cm �9 L ~ ( X ,  13, #) s.t. 

minl<i<m E( (Snf  - c~) 2 I g) (x )  < r for a.e. x �9 Z 

and all n}. 

Then there is a S-invariant sub-a-algebra gs C B such that 

7-lc(S) = L2(X, gs,/*). 

gs  will be called a compact extension of g. In particular, the compact extension 

of the Kronecker factor of S will be called the degree  2 Kronecker factor and 
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denoted by/C2(S). It is clear that ~2(S) D t : I(S) .  Unlike the degree 1 Kronecker 

factors, for two ergodic commuting measure preserving transformations S and T, 

~2(S) is usually not the same as/C2(T). We will give an example in w The 

following theorem can be used to test if a function is in the compact extension. 

A proof can be found in [2, pages 62-64]. 

THEOREM 2.1 : Let C be a factor of  ergodic system (X, 13, #, T). Then f E TI is 

perpendicular to Tic(S) i f  and only if, for any g E L~176 13, #), 

1 N-1 
~ IE(gS~f I C)(x)l-~ 0 
n=0 

in the sense of almost pointwise and L 1. 

Now we consider two examples which represent two extreme situations for 

compact extensions of Kronecker factors. 

Example 1: Let X = T • Z~ .  For measurable function F: T --* Z ~  and an 

irrational number a E T,  one can define a measure preserving transformation S 

o n X  by 

S(t, x) = (t + a, x + F(t)) .  

Now we assume that  S is ergodic. Then 

/CI(S) -- {A • Z~ :  A is a measurable subset of T}.  

Let ~/j(x) = (1 - 2xj) and 

~/jlJ2""j,~ = "~Jl ~/J2 "'" ~J-, 

for all j l , j 2 , . - .  ,Jm. These are all characters for Z~ .  Let cl = ~jlj2...j,~ and let 

c2 = -~JlJ2...J,,. For any ( t ,x)  E X, ~/jlj2...jm(F(t)) is either 1 or - 1 .  Noticing 

that 

S'Tj,j2...j,, (t, x) = ~/j,j,...j,, (F(t))Tj,j~...5,, (x), 

we have that  

- 2 1 J C l ( S ) )  = 0 .  
1,2 

Since linear combinations of characters are dense in L2(X, 13,#), ~2(S)  = 13. 
| 
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Example 2: Let X = T x Z~ ~ For any x = ( . . . , x - t , xo ,  x l , . . . ) ,  define a shift 

r:  Z~ ~ ~ Z~ ~ by ( rx) i  = xi+l. Then for any irrational number/3 6 T,  one can 

define a measure preserving transformation T on X by 

Tit, x) = ( t +/3, rx) .  

Since ~" is mixing on Z~ ~ T must be ergodic. One can easily find out that  

K:i(T) = {A x Z~~ A is a measurable subset of T}.  

For any g 6 L~176 B, #), 

1 1 (g(t, x)Tjd2...j., ( rnx )dx  --* 0 

for all t E T. Noticing that  g and 7jd2...j,~ are all bounded functions, by 

Theorem 2.1, we have that  K:2(T) = K:liT). | 

Let pa: t ~ t + s be a rotation on T defined by an irrational number s .  For 

any function f from T to a compact abelian group G,  one can define a cocycle 

by 
n--1  

f(~)it) = ~ fit  + ks). 
k = 0  

For brevity, we will sometimes call f a cocycle. For any two cocycles fx and f2, 

one says that  they are c o h o m o l o g o u s  to each other if there exists a measurable 

function u: T ~ G such that  

. f }") ( t )  = . f~ ) ( t )  + ~,(t + ks )  - , , ( t ) .  

For any cocycle f( t) ,  let G f  denote the closed subgroup of G generated by 

{f(")(t):  t 6 W and n 6 Z}. 

A cocycle f ( t )  is called m i n i m a l  if there is no cocycle fo(t) cohomologous to f 

such that  G f0 C G f  but Gfo # G I .  

For any cocycle f( t) ,  one can define a measure preserving transformation S 

(sometimes we use SI for emphasizing the cocycle) on T x G by 

s(t,x) = (t + s,x + f(t)). 

Now we use a known result to end this section. A proof of the following theorem 

can be found in [Ii, page 391]. 
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THEOREM 2.2: With the above definitions, 

(i) any cocycle is cohomologous to a minimal cocycle; 

(ii) a cocycle f ( t ) is minimal and G I = G if and only if  S I is ergodic on T • G; 

(iii) i f  f1(t) and f2(t) are cohomologous, then G fl = GI~. 

3. E r g o d i c i t y  of  skew products 

In this section, we will use results on continued fractions for irrational numbers 

and uniform distributions of sequences in R m. More detail can be found in 

[4, 5]. 
For any x e R m, Ix] = ([xl], Ix2], . . . ,  [xm]) and ]x[= x - I x ] .  For any x e R,  we 

will use I xl to denote the distance from x to the nearest integer. The following 

result can be found in [7, page 161]. 

THEOREM 3.1: Let {An} be a sequence ofnonsingular m • m matrices with 

integer entries and, for fixed n and k = 1, 2 , . . . ,  n, let h~ '~) be the number of 

integers j (1 < j <_ n) such that det(Aj - Ak) = O. If  there are two positive 

constants ~ and c such that 

max h (n) = h ('~) < cn 
l<k<n -- (log n) l+ ~' 

then {]A,~v[} is uniformly distributed in [0, 1) m for a.e. v E [0, 1) m. 

COROLLARY 3.2: Let {p,~/ q,~ } be the partial convergents of an irrational number 

a e [0,1). Then for a.e. v e [0, 1) m, {]q,~v[} is uniformly distributed in [0, 1) m. 

Proo~ Let I be the m • m identity matrix and let An = q,~I. Then q,~v = A,~v. 

It is clear that  h (n) = 1. So the conditions in Theorem 3.1 are satisfied. Therefore 

the corollary follows. | 

In [3, pages 8-9], Katznelson proved the following proposition, though he did 

not summarize the results in a theorem. 

PROPOSITION 3.3: Let 0 < a < �89 be an irrational number with continued 

fraction convergents {p~/ qn } and let P,~ (a) be the set of right half-open partition 

intervals o f T  defined by {ja:  j = 0, 1 , . . . ,  qn-1} .  Then at most qn-l-b l intervals 

in P~(a) have length I q~-la[ + [ q~a[ and the rest of the intervals in 7an(a) 

have length ] qn-la] �9 
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For any interval J in the partition Pn(c~) defined in Proposition 3.3, it is clear 

that  [J[ < 1/q,~. Since 

we have 2qnl qn-l~l -> 1. Therefore the following corollary follows. 

COROLLARY 3.4: For any J �9 :P,~(a), 1/(2q,~) <_ IJI < 1/q,~. 

Let G = {go, gl, g 2 , . . . ,  gm} be a finite abelian group with identity e = go and 

let T be an one-dimensional torus (which is also sometimes denoted by [0, 1)). 

Let ~ �9 [0, 1) be an irrational number. For any 0 < tl < t2 < " "  < t m  < 1, 

define 
f e i f 0 < t < t l o r t m < t < l ,  

/ t ,  (t) tm gi if ti-1 < t < ti for i = 2 , 3 , . . . , m .  

For every ( t l , t 2 , . . . , t m )  �9 [0, 1) TM, one can define a measure preserving trans- 

formation Stl,t2 ..... t.~ on T x G by: 

PROPOSITION 3.5: Let  0 < a < 1/2 be an irrational number with 

continued fraction [al, a2,. . .]  and convergents {Pn/q,~}. Assume that there ex- 

ists a subsequence {a,~} C {a,~} such that limk._.~ a,~ = cr Then for any 

0 < t~ < t2 < . . .  < t,~ < 1 satisTying that  {]q,~(t~,t2,...,tin)f} is uniformly 

distributed in [0, 1) m, Stl,t2 ..... t.~ is ergodic. 

Proof'. We here only prove the proposition for the case limn.-.~ an = cr The 

more general situation can be handled in the same way. 

For convenience, we use S and f ( t )  to denote St~,t~ ..... t.. and ]tl,t~ ..... t.~(t), 

respectively. Since {]q,~(tl, t 2 , . . . ,  t,-,)[} is uniformly distributed in [0, 1) m, there 

exists a subsequence {qn~ } so that 

gm " 

We claim that for any sufficiently large k and for any i = 1, 2 , . . . ,  m, 

(1) #({t: f(q"~)(t) = g~}) > 1 
- 1 6 m "  

Let P,~(a) be the set of right half-open partition intervals of T defined by 

{]ja[: j = 0 , 1 , . . . , q , ~ -  1}. 
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Let Ai = {] t~+ja[ : j  = 0 , 1 , . . . , m }  for i = 1 , 2 , . . . , m .  For any J e P,~(a), IJI 

will be ei ther  t q,~_la I or t qn_ la  I +l qnal " Then  {JAAil  <_ 2 f o r i  = 1 , 2 , . . . , m .  

By Propos i t ion  3.3, there is Qn c Pn with  IQ,~I >- qn - m q ~ - l  such tha t ,  for any 

J E  Qn, I J A  A i l =  1 for i = 1 , 2 , . . . , m .  

For any nk and any J = [a, b) E Qnk, let ai = J A A~. Since 

O~ ---- Pn___Lk + rnk  
a 2 qn~ n~q~ 

there is a j l  with -qn~ < j '  < q~k such tha t  

J'P~k + [q,~ti] 1 [ "1 r 
a i - a = t i + j ' a =  +Jq~ktiL+ 3 '~k ( m o d l ) .  

qn~ q,~k nk qnk 

Since l a i -  a I < 1/qn~, ](j'p,~ + [qn~ti])/qn~ [will  be ei ther 0 or +l/q~ k. Noticing 

tha t  a~ > a, ]q~ t i [~  i / 8m  and ank ~ r we know tha t  when nk is sufficiently 

large 
j'Pn~ + [qn~ti] 

= 0 (mod 1) . 
qnk 

For some ~ > 0, choose k sufficient large so tha t  1 / a ~  < e and  

Then  for l < i < m ,  

I]qn.t~[-8~--~ml < E 

i i 
- -  - 2 m e  < q ,~  (a l  - a )  < -~m + 2 m e .  
8m 

For 0 < i < m -  1, let 

f e i f 0 < _ t < t ~ o r t m _ < t < l ,  
hi(t) 

g i + l - g ~  i f t ~ < t < t m .  

x-~m-1 h'tt~ T h e n f ( t )  = z.~=l ~ j. Assume a~ = t i + j i a  for 1 < i < m - 1 .  I t  is clear 

tha t  for t E (a, b) = J ,  

m - 1  

f(q~k)(t) = fo + E h~(t + j~a), 
i=1 

where fo = f(q~D(a). Noticing tha t  

m - 1  

h,(t + j,.) = { 
i=1  

e if 0 < t < a l  or am < t < 1, 

g~ if a~- i  < t < ai for i = 2, 3 , . . . ,  m,  
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we have that  for i = 1, 2 , . . . ,  m, 

#{t  E J: f (q .~)( t )  = g~} >- q,~--"~l ( l . ~ m _ 2 m e ) .  

Since IQ,~I >- q,~, - m q , ~ , - I  and qn~-x/q,~, '~ 1/a,~ ~ O, (1) is true for 

l < i < m .  

Now suppose that S is not ergodic. Then there is a nontrivial subgroup G0 C G 

and a function U: [0, 1) --* (] such that  f (n) ( t )  + U(t  + u(~) - U(t)  E G0 for all 

n and a.e. t E T. Therefore, for sufficiently large k, 

1 
#{t E [0, 1): f (q"~)(t)q[ G0} < 32---m" 

This contradicts our claim (1). Therefore the proposition follows. I 

THEOREM 3.6: Let  [ a l , a 2 , . . . ]  be the continued fraction ofO < a < 1/2. / f  

sup{ai: i = 1, 2 , . . .}  = +co, 

then for a.e. (tl, t 2 , . . . ,  tin) E [0, 1) TM with 0 < tl  < t2 < . . .  < tin, St,,t2 ..... tm is 

ergodic. 

Proos We here only prove the theorem for the case limn-.oo a,~ = co. The more 

general situation can be proved in the same way. 

Let p,./qn be n-th order convergents of a. By Corollary 3.2, there is a set I C 

[0,1)m\Qma with full measure such that,  for any (tl, t 2 , . . . ,  tin) E I, the sequence 

{]qn(tl, t 2 , . . . ,  tin)[} is uniformly distributed in [0, 1) m. Now the theorem follows 

from Proposition 3.5. | 

4. E x a m p l e s  for K2(S) # K 2 ( T )  

Let p,~ be an irrational rotation on T defined by the irrational number a. For 

any integer m > 0 and any irrational numbers t l , t 2 , 3  E [0, 1) with tl < t2, we 

define a function f :  T --* Z~ = {0, 1} by 

S 0 i f 0 < t < t l o r t 2 _ < t < l ,  (2) f ( t )  / 1 i f t l < t < t 2 ,  

and a measure preserving map S on T • Z~  by: 

S ( t ,  X l , X 2 , . . .  , x m )  : 

(t + Xl + : ( t ) ,  + : ( t  + ;3 ) , . . . ,  + : ( t  + (m - 
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= { 
and let 

PROPOSITION 4.1: Let [al ,a2, . . . ]  be the continued fraction ofO < a < 1/2 

such that 

lim a n = O 0  
n ~ ( x )  

and let (tl,t2,/3) �9 [0,1)3\Q 3 with tl < t2. I f  {]qn~(tl,t2,/3)[} is uniformly 

distributed in [0, 1) 3, then S is ergodic on T x Z ~  for all m > O. 

Proo~ Let F(t)  = (f( t) ,  f ( t  + / 3 ) , . . . ,  f ( t  + (m - 1)/3)). Assume that S is not 

ergodic. Then there is a nontrivial subgroup G C Z~ and a function U: [0, 1) 

Z m such that 

(3) F(~)(t) + U(t + na) - U(t) �9 G 

for all n and a.e. t �9 T. Now we will use the similar method used in Proposi- 

tion 3.5 to get a contradiction. 

For 1 < i  1 < r e , l e t  

(0, 0 . . . .  ,0) if 0 < t <It1 + ( i ' -  1)/3[, 
( 0 , . . . , 0 , 1 , 0 , . . . , 0 )  i f ] t x + ( i ' - l ) / 3 [ _ < t  < 1, 

i~--I 

( o , o  . . . . .  o) 
Fi,2(t) = (0 , . . . ,  0, 1, 0 , . . . ,  0) 

i~ - I  

if 0 _< t < )2  + (i' - 1)/3[, 
if ]t2 + (i' - 1)/3[< t < 1. 

Let 7),(a) be the set of right half-open partition intervals of T defined by 

{]ja[: j = 0,1 . . . .  ,q ,  - 1}. 

Let 

Aw = {]ti + (i' - 1)/3+ ja[:  j = 0 , 1 , . . . , n }  

for i = 1, 2 and i' = 1, 2 , . . . ,  m. For any J E P,~(a), I J] will be either ] qn-la]  

or ]qn- la ]  + ] q n a I .  T h e n i J M A i i  , ] _ < 2 f o r i =  1,2 a n d i ' =  1 , 2 , . . . , m .  By 

Proposition 3.3, there is QO c Pn with ]Q~I >- qn - 2mq,~-i such that, for any 

J E Q ~ I JMAwl  = l f o r i =  l , 2 a n d  i ' =  l, 2 , . . ' , m .  N o w w e c h o o s e { n k } s u c h  

that 
]qnk(tl,t2,/3)[__, ( 1 1 1 ) 

8 m ' 4 m ' 4 ~ n  " 

Since U(t + qnk a) - U(t) ~ O, when k is sufficiently large 

1 
g{t: V(t  + qn~a) - V(t)  # 0} < 12S---m" 
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Let 

Q ~  = {J  e 79n~:/~({t: U(t + q , ~ )  - U(t) # 0} fq J )  > JJl/64m). 

Q1 Then it is clear that  for sufficiently large k, I ,~kl < q,~k/2. Now let Qn~ = 

Q~ k N Qlnk. Then 
qn~ 

]Q,~I > -~-  - 2mqn~-l.  

For a sufficiently large n~, let J = [a, b) E Qnk and let a i l , =  J I'1 Aii, for 

i = 1,2 and i' = 1 , 2 , . . . , m .  Since 

Pnk rnk OZ= - t - - -  
qnk an~ q~k 

and 1/(2q,  h) < IJI _< 1/q,~k (see Corollary 3.4), there exists -qnk -< J < q,~ such 

tha t  

aii, -- a = 
JPnk + [tiq,~] + [ ( i ' -  1)~qn~] + ]qn~ti[ + ] ( i ' -  1)flqnk[ j'rn~ r + 

qnk qnk qn~ nk qn~ 

Since l a i -  a I g 1/qn~, 

JPnk + [tiqnk] + [ ( i ' -  1)j3qnk] 
qn~ 

will be either 0, +l/qnk or • Noticing that  

i i 
{]qnktl[} ~ 8-ram' {]q,,~t2[} ~ 4---ram' and 

we have that ,  when k is sufficiently large, 

ank -..} (Do, 

] ( i ' -  1)~qnk [ = ( i ' -  1)]f~qn k [ 

and ] jp,,~ + [tiqn~] + [(i' - 1)~qnk] [ = 0. 
qnk l 

Therefore when k is sufficiently large, 

8 i '  - 5 8 i '  - 3 

32"--'--m- < qnk ( a l i , -  a) < 32-----m- 

and 
4i I - 1 4i I + 1 

32---'-m- < qnk (a2i, - a) < 32-'--m 
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a <  a l l  < a21 < a12 < a22 < " '"  < a l t o  < a 2 m  < - -  
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for interval J such that the length of each interval of the partition of J is longer 

than 1/32mqn~. Since 

m 

F(nk)(t) = F(n~)(a) + Z ( F , , l ( t  +al i , )  + F,,l(t  + a2,,)), 
i 1 = 1  

we nave that, for t � 9  a2i,), 

f ("~)( t )  = f ( ~ ) ( a )  + ( ~ ,  1 ,0 , . . .  ,0) 

it 

and for t �9 (a2e,al(e+l)), F(n~)(t) = F(nk)(a). Noticing that  J �9 Q,~ and the 

length of each interval of the partition of J,  one has 

(f(n~)(t): t �9 J \{ t :  U(t + qn~a) - U(t) # 0}) = Z~.  

This contradicts (3). | 

By Corollary 3.2, we have an immediate corollary. 

COROLLARY 4.2: Let [al, a2,. . .]  be the continued fraction for 0 < a < 1/2 with 

lim~__.~ a~ = co. Then, for a.e. ( t l , t 2 , ~ ) � 9  [0,1) 3 with tl < t2, S is ergodic. 

COROLLARY 4.3: Let [al,a2,...] be the continued fraction for 0 < a < 1/2 

with lin~-.,~o a,~ = co and let ( t l , t2 ,~)  �9 [0,1) 3 with tl < t2. I f ( ]qn( t l , t z ,  fl)[} 

is uniformly distributed in [0, 1) 3, then S on T • Z ~  defined by 

T(t ,  . . . , x - l ,Zo ,  Xl , . .  .) = 

(t + a , . . . ,  x -1  + f ( t  - ~), :Co + / ( t ) ,  Xl + .f(t + ~) , . . . )  

is ergodic. 

Proo~ For any j �9 Z, let 7 j ( - . - ,Z- l ,Z0 ,Xx, . . . )  = 1 - 2zj. Then for any 

j l , j 2 , . . . , j m  

7(jlj2...j~) = 7jlTj2 "'" 7j,, 

give all characters on Z~ .  
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Assume S is not ergodic. There exists a nonconstant 

h E L2(T x Z~) .  Assume that  

h( t , .  . . , X - - I , X O ,  X l ,  . . . )  = 

Isr. J. Math .  

S-invariant function 

a~,~2 ..... ~ ($)'Y(~2...j~)(..., x - l ,  xo, x l , . . . ) .  
jl,j2,...,j,, 

Since h is nonconstant, we assume aj~,j 2 ..... j , , ( t)  r 0 for some j l , j 2 , . . . , j m .  Let 

N E Z such that IJi[ < N for i = 1, 2 , . . . ,  m and let SN be the measure preserving 

transformation on T x Z~ N+I defined by 

S N ( t ,  Z - N  . . . .  , Z - l ,  ZO, Z l ,  . . . ,  X N )  = 

(t + a ; X - N  + f ( t  -- Y / 3 ) , . . .  ,x0 + f ( t ) , x l  + f ( t  + / 3 ) , . . .  ,XN + f ( t  + N/3)).  

Then 

hN(t; X - N , . . . ,  x - l ,  XO, x t , . . . ,  XN) = aj1,i2 ..... j,, (t)(1 -- 2x j~ ) . . .  (1 -- 2xj,,) 

is a nonconstant SN-invariant function. This contradicts Proposition 4.1. | 

Let X = T x Z ~  and let [a l ,a2, . . . ]  be the continued fraction of 0 < a < 1/2 

with limn-.oo an = co. Let Pn/qn be the convergents of a. Choose (tl, t2,/3) E 

[0, 1) 3 such that  tl  < t2 and {]q~(tl, t2,/3)[} is uniformly distributed in [0, 1) 3. 

Define f ( t )  as (2) and 

F ( t )  = ( . . . ,  f ( t  -/3), f(t), f(t +/3),...). 

Let V be the shift on Z ~ ,  i.e. 

(TX) i  = Xi+  1 for X = ( . . . ,  X- - l ,  X0, X 1 . . . .  ) E Z ~  ~ 

Now we can define two measure-preserving transformations S and T on X by 

S( t ,  x) = (t + a,  x + F(t))  and T ( t , x )  = (t + ~, ' rx) .  

By Corollary 4.3, S is ergodic. Since r is mixing, T is also ergodic. Noticing that  

F( t  +/3) = rF( t ) ,  we have 

S T ( t ,  x) = (t + c~ +/3, F( t  +/3) + TX) 

= (t + a +/3, r (F ( t )  + x)) = T S ( t ,  x). 

Therefore S and T are commuting ergodic measure preserving transformations 

on X. By Examples 1 and 2 in w we know that  K2(S) = X and K2(T) = 

K t (T )  = T.  Therefore: 
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THEOREM 4.4: There exist ergodic commuting measure preserving transforma- 

tions S and T on a probability space X such that K2(S) r K2(T).  
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